Climate Change Indicators: Greenhouse Gases | US EPA – U.S. EPA.gov

An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
JavaScript appears to be disabled on this computer. Please click here to see any active alerts.
Greenhouse gases from human activities are the most significant driver of observed climate change since the mid-20th century.1 The indicators in this chapter characterize emissions of the major greenhouse gases resulting from human activities, the concentrations of these gases in the atmosphere, and how emissions and concentrations have changed over time. When comparing emissions of different gases, these indicators use a concept called “global warming potential” to convert amounts of other gases into carbon dioxide equivalents.
As greenhouse gas emissions from human activities increase, they build up in the atmosphere and warm the climate, leading to many other changes around the world—in the atmosphere, on land, and in the oceans. The indicators in other chapters of this report illustrate many of these changes, which have both positive and negative effects on people, society, and the environment—including plants and animals. Because many of the major greenhouse gases stay in the atmosphere for tens to hundreds of years after being released, their warming effects on the climate persist over a long time and can therefore affect both present and future generations.
This table shows 100-year global warming potentials, which describe the effects that occur over a period of 100 years after a particular mass of a gas is emitted. Global warming potentials and lifetimes come from Tables 7.15 and 7.SM.7 of the Intergovernmental Panel on Climate Change’s Sixth Assessment Report, Working Group I contribution.3
* Carbon dioxide’s lifetime cannot be represented with a single value because the gas is not destroyed over time, but instead moves among different parts of the ocean–atmosphere–land system. Some of the excess carbon dioxide is absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments.
** Methane’s global warming potential is shown as a range that includes methane from both fossil and non-fossil sources.
See Understanding Global Warming Potentials to learn more about the numbers in the table above and the versions EPA uses for various calculations.  
EPA has two key programs that provide data on greenhouse gas emissions in the United States: the Inventory of U.S. Greenhouse Gas Emissions and Sinks and the Greenhouse Gas Reporting Program. The programs are complementary, providing both a higher-level perspective on the nation’s total emissions and detailed information about the sources and types of emissions from individual facilities. The data in EPA’s U.S. Greenhouse Gas Emissions indicator come from the national inventory.
EPA develops an annual report called the Inventory of U.S. Greenhouse Gas Emissions and Sinks (or the GHG Inventory). This report tracks trends in total annual U.S. emissions by source (or sink), economic sector, and greenhouse gas going back to 1990. EPA uses national energy data, data on national agricultural activities, and other national statistics to provide a comprehensive accounting of total greenhouse gas emissions for all man-made sources in the United States. This inventory fulfills the nation’s obligation to provide an annual emissions report under the United Nations Framework Convention on Climate Change.
Learn more about the inventory and explore the data using interactive tools.
Since 2010, EPA’s Greenhouse Gas Reporting Program has been collecting annual emissions data from industrial sources that directly emit large amounts of greenhouse gases. Generally, facilities that emit more than 25,000 metric tons of carbon dioxide equivalents per year are required to report. The program also collects data from entities known as “suppliers” that supply certain fossil fuels and industrial gases that will emit greenhouse gases into the atmosphere if burned or released—for example, refineries that supply petroleum products such as gasoline. The Greenhouse Gas Reporting Program only requires reporting; it is not an emissions control program. This program helps EPA and the public understand where greenhouse gas emissions are coming from, and will improve our ability to make informed policy, business, and regulatory decisions.
Learn more about the Greenhouse Gas Reporting Program and explore data by facility, industry, location, or gas using a data visualization and mapping tool called FLIGHT. You can also review state- or tribal-specific emissions using interactive fact sheets and download detailed data via EPA’s Envirofacts database. 
1 IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. Working Group I contribution to the IPCC Sixth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/assessment-report/ar6.
2 IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. Working Group I contribution to the IPCC Sixth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/assessment-report/ar6
3 IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. Working Group I contribution to the IPCC Sixth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/assessment-report/ar6.

source

Leave a Reply

Your email address will not be published. Required fields are marked *