Spatial match–mismatch between predators and prey under climate change – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Ecology & Evolution (2024)
Metrics details
Climate change is driving a rapid redistribution of life on Earth. Variability in the rates, magnitudes and directions of species’ shifts can alter spatial overlap between predators and prey, with the potential to decouple trophic interactions. Although phenological mismatches between predator requirements and prey availability under climate change are well-established, ‘spatial match–mismatch’ dynamics remain poorly understood. We synthesize global evidence for climate-driven changes in spatial predator–prey overlap resulting from species redistribution across marine and terrestrial domains. We show that spatial mismatches can have vastly different outcomes for predator populations depending on their diet specialization and role within the wider ecosystem. We illustrate ecosystem-level consequences of climate-driven changes in spatial predator–prey overlap, from restructuring food webs to altering socio-ecological interactions. It remains unclear how predator–prey overlap at the landscape scale relates to prey encounter and consumption rates at local scales, or how the spatial reorganization of food webs affects ecosystem function. We identify key research directions necessary to resolve the scale of ecological impacts caused by species redistribution under climate change.
This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
Prices may be subject to local taxes which are calculated during checkout
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Article  PubMed  Google Scholar 
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
Article  Google Scholar 
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Article  CAS  PubMed  Google Scholar 
VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
Article  Google Scholar 
Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal ‘savannization’ on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).
Article  Google Scholar 
Schmitz, O. J., Miller, J. R., Trainor, A. M. & Abrahms, B. Toward a community ecology of landscapes: predicting multiple predator–prey interactions across geographic space. Ecology 98, 2281–2292 (2017).
Article  PubMed  Google Scholar 
García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
Article  Google Scholar 
Koenig, W. D. & Liebhold, A. M. Temporally increasing spatial synchrony of North American temperature and bird populations. Nat. Clim. Change 6, 614–617 (2016).
Article  Google Scholar 
Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021).
Article  PubMed  Google Scholar 
Tekwa, E. W., Watson, J. R. & Pinsky, M. L. Body size and food-web interactions mediate species range shifts under warming. Proc. R. Soc. B 289, 20212755 (2022).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Durant, J. M., Holt, R. E., Ono, K. & Langangen, Ø. Predatory walls may impair climate warming associated population expansion. Ecology 104, e4130 (2023).
Article  PubMed  Google Scholar 
Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).
Article  PubMed  Google Scholar 
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
Article  PubMed  Google Scholar 
Cushing, D. H. in Sea Fisheries Research (ed. Harden Jones, F. R.) 399–412 (Elek Science, 1974).
Cushing, D. H. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Marine Biol. 26, 249–293 (1990).
Article  Google Scholar 
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
Article  PubMed  PubMed Central  Google Scholar 
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
Article  CAS  PubMed  Google Scholar 
Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).
Article  PubMed  PubMed Central  Google Scholar 
Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213 (2019).
Article  PubMed  PubMed Central  Google Scholar 
Ferreira, A. S. A., Neuheimer, A. B. & Durant, J. M. Impacts of the match–mismatch hypothesis across three trophic levels—a case study in the North Sea. ICES J. Mar. Sci. 80, 308–316 (2023).
Article  Google Scholar 
Youngflesh, C. et al. Demographic consequences of phenological asynchrony for North American songbirds. Proc. Natl Acad. Sci. USA 120, e2221961120 (2023).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).
Article  PubMed  Google Scholar 
Zhemchuzhnikov, M. K. et al. Exploring the drivers of variation in trophic mismatches: a systematic review of long‐term avian studies. Ecol. Evol. 11, 3710–3725 (2021).
Article  PubMed  PubMed Central  Google Scholar 
Kharouba, H. M. & Wolkovich, E. M. Lack of evidence for the match‐mismatch hypothesis across terrestrial trophic interactions. Ecol. Lett. 26, 955–964 (2023).
Article  PubMed  Google Scholar 
Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and prey availability. Clim. Res. 33, 271–283 (2007).
Article  Google Scholar 
Hamilton, C. D. et al. Spatial overlap among an Arctic predator, prey and scavenger in the marginal ice zone. Mar. Ecol. Prog. Ser. 573, 45–59 (2017).
Article  Google Scholar 
Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).
Article  PubMed  PubMed Central  Google Scholar 
Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).
Article  PubMed  Google Scholar 
Selden, R. L., Batt, R. D., Saba, V. S. & Pinsky, M. L. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. Glob. Change Biol. 24, 117–131 (2017).
Article  Google Scholar 
Castro, L. C. et al. Combined mechanistic modelling predicts changes in species distribution and increased co‐occurrence of a tropical urchin herbivore and a habitat‐forming temperate kelp. Divers. Distrib. 26, 1211–1226 (2020).
Article  Google Scholar 
Pintor, L. M. & Byers, J. E. Do native predators benefit from non‐native prey? Ecol. Lett. 18, 1174–1180 (2015).
Article  PubMed  Google Scholar 
LaPoint, S. D., Belant, J. L. & Kays, R. W. Mesopredator release facilitates range expansion in fisher. Anim. Conserv. 18, 50–61 (2015).
Article  Google Scholar 
Siddon, E. C. et al. Spatial match–mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea. PLoS ONE 8, e84526 (2013).
Article  PubMed  PubMed Central  Google Scholar 
Thorson, J. T. et al. Forecasting community reassembly using climate‐linked spatio‐temporal ecosystem models. Ecography 44, 612–625 (2021).
Article  Google Scholar 
Thorne, L. H. & Nye, J. A. Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey. Sci. Rep. 11, 18507 (2021).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Booms, T., Lindgren, M. & Huettmann, F. in Gyrfalcons and Ptarmigan in a Changing World Vol. 1 (eds Watson, R. T. et al.) 177–190 (The Peregrine Fund, 2011).
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
Article  Google Scholar 
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Article  PubMed  Google Scholar 
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
Article  CAS  PubMed  Google Scholar 
Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Phil. Trans. R. Soc. B 374, 20180550 (2019).
Article  PubMed  PubMed Central  Google Scholar 
Hunsicker, M. E., Ciannelli, L., Bailey, K. M., Zador, S. & Stige, L. C. Climate and demography dictate the strength of predator–prey overlap in a subarctic marine ecosystem. PLoS ONE 8, e66025 (2013).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Carroll, G. et al. A review of methods for quantifying spatial predator–prey overlap. Glob. Ecol. Biogeogr. 28, 1561–1577 (2019).
Article  Google Scholar 
Subba, B., Sen, S., Ravikanth, G. & Nobis, M. P. Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biol. Conserv. 227, 352–360 (2018).
Article  Google Scholar 
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Article  CAS  PubMed  Google Scholar 
Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Nat. 186, 196–211 (2015).
Article  PubMed  Google Scholar 
Carroll, G. et al. Flexible use of a dynamic energy landscape buffers a marine predator against extreme climate variability. Proc. R. Soc. B 288, 20210671 (2021).
Article  PubMed  PubMed Central  Google Scholar 
Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Straus, S. et al. Macroecological constraints on species’ ‘movement profiles’: body mass does not explain it all. Glob. Ecol. Biogeogr. 33, 227–243 (2024).
Article  Google Scholar 
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Article  CAS  PubMed  Google Scholar 
Sales, L. P., Rodrigues, L. & Masiero, R. Climate change drives spatial mismatch and threatens the biotic interactions of the Brazil nut. Glob. Ecol. Biogeogr. 30, 117–127 (2021).
Article  Google Scholar 
Aryal, A. et al. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075 (2016).
Article  PubMed  PubMed Central  Google Scholar 
Bulleri, F. et al. Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16, e2006852 (2018).
Article  PubMed  PubMed Central  Google Scholar 
Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42, 1789–1801 (2019).
Article  Google Scholar 
Graham, C., Pakhomov, E. A. & Hunt, B. P. Meta-analysis of salmon trophic ecology reveals spatial and interspecies dynamics across the North Pacific Ocean. Front. Mar. Sci. 8, 224 (2021).
Article  Google Scholar 
Falkegård, M. et al. Consumption of Atlantic salmon across ontogenetic stages and impacts on populations. Can. J. Fish. Aquat. Sci. 80, 1696–1713 (2023).
Google Scholar 
Fall, J., Ciannelli, L., Skaret, G. & Johannesen, E. Seasonal dynamics of spatial distributions and overlap between Northeast Arctic cod (Gadus morhua) and capelin (Mallotus villosus) in the Barents Sea. PLoS ONE 13, e0205921 (2018).
Article  PubMed  PubMed Central  Google Scholar 
Orio, A., Bergström, U., Florin, A. B., Šics, I. & Casini, M. Long-term changes in spatial overlap between interacting cod and flounder in the Baltic Sea. Hydrobiologia 847, 2541–2553 (2020).
Article  CAS  Google Scholar 
Villén‐Peréz, S., Heikkinen, J., Salemaa, M. & Mäkipää, R. Global warming will affect the maximum potential abundance of boreal plant species. Ecography 43, 801–811 (2020).
Article  Google Scholar 
Ferreira, A. S. A. et al. Match–mismatch dynamics in the Norwegian–Barents Sea system. Mar. Ecol. Prog. Ser. 650, 81–94 (2020).
Article  Google Scholar 
Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).
Article  PubMed  Google Scholar 
Suraci, J. P. et al. Beyond spatial overlap: harnessing new technologies to resolve the complexities of predator–prey interactions. Oikos 2022, e09004 (2022).
Article  Google Scholar 
Schmitz, O. J. & Barton, B. T. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control 75, 87–96 (2014).
Article  Google Scholar 
Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography 42, 1267–1279 (2019).
Article  Google Scholar 
Fall, J., Johannesen, E., Englund, G., Johansen, G. O. & Fiksen, Ø. Predator–prey overlap in three dimensions: cod benefit from capelin coming near the seafloor. Ecography 44, 802–815 (2021).
Article  Google Scholar 
Ferrarini, A., Giglio, G., Pellegrino, S. C. & Gustin, M. Overlap and segregation among multiple 3D home ranges: a non-pairwise metric with demonstrative application to the lesser kestrel Falco naumanni. Biology 12, 77 (2023).
Article  PubMed  PubMed Central  Google Scholar 
Öhlund, G., Hedström, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B 282, 20142254 (2015).
Article  PubMed  PubMed Central  Google Scholar 
Volkoff, H. & Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 7, 307–320 (2020).
Article  Google Scholar 
Goodman, M. C. et al. Shifting fish distributions impact predation intensity in a sub‐Arctic ecosystem. Ecography 2022, e06084 (2022).
Article  Google Scholar 
Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).
Article  Google Scholar 
Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).
Article  PubMed  Google Scholar 
Peers, M. J., Wehtje, M., Thornton, D. H. & Murray, D. L. Prey switching as a means of enhancing persistence in predators at the trailing southern edge. Glob. Change Biol. 20, 1126–1135 (2014).
Article  Google Scholar 
Livernois, M. C., Fujiwara, M., Fisher, M. & Wells, R. D. Seasonal patterns of habitat suitability and spatiotemporal overlap within an assemblage of estuarine predators and prey. Mar. Ecol. Prog. Ser. 668, 39–55 (2021).
Article  Google Scholar 
Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio‐temporal monitoring. Glob. Ecol. Biogeogr. 25, 1144–1158 (2016).
Article  Google Scholar 
Marzloff, M. P. et al. Modelling marine community responses to climate‐driven species redistribution to guide monitoring and adaptive ecosystem‐based management. Glob. Change Biol. 22, 2462–2474 (2016).
Article  Google Scholar 
Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).
Article  Google Scholar 
Aryal, A., Brunton, D., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).
Article  Google Scholar 
Parsons, M. A., Newsome, T. M. & Young, J. K. The consequences of predators without prey. Front. Ecol. Environ. 20, 31–39 (2022).
Article  Google Scholar 
Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85, 253–291 (2010).
Article  PubMed  Google Scholar 
Letnic, M., Webb, J. K. & Shine, R. Invasive cane toads (Bufo marinus) cause mass mortality of freshwater crocodiles (Crocodylus johnstoni) in tropical Australia. Biol. Conserv. 141, 1773–1782 (2008).
Article  Google Scholar 
Webb, J. K. et al. A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader. Austral Ecol. 33, 821–829 (2008).
Article  Google Scholar 
Albouy, C. et al. From projected species distribution to food‐web structure under climate change. Glob. Change Biol. 20, 730–741 (2014).
Article  Google Scholar 
Wang, J., Grimm, N. B., Lawler, S. P. & Dong, X. Changing climate and reorganized species interactions modify community responses to climate variability. Proc. Natl Acad. Sci. USA 120, e2218501120 (2023).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
Article  PubMed  PubMed Central  Google Scholar 
Zarco‐Perello, S. et al. Range‐extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34, 2411–2421 (2020).
Article  Google Scholar 
Valiente‐Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Article  Google Scholar 
Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).
Article  PubMed  Google Scholar 
Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).
Article  PubMed  PubMed Central  Google Scholar 
Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).
Article  Google Scholar 
Waldock, C. et al. A quantitative review of abundance‐based species distribution models. Ecography 2022, e05694 (2022).
Article  Google Scholar 
Pichler, M. & Hartig, F. A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods Ecol. Evol. 12, 2159–2173 (2021).
Article  Google Scholar 
Trainor, A. M., Schmitz, O. J., Ivan, J. S. & Shenk, T. M. Enhancing species distribution modelling by characterizing predator–prey interactions. Ecol. Appl. 24, 204–216 (2014).
Article  PubMed  Google Scholar 
Carroll, G., Everett, J. D., Harcourt, R., Slip, D. & Jonsen, I. High sea surface temperatures driven by a strengthening current reduce foraging success by penguins. Sci. Rep. 6, 22236 (2016).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Bischof, R. et al. Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proc. Natl Acad. Sci. USA 117, 30531–30538 (2020).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Change 13, 224–234 (2023).
Article  Google Scholar 
Pickles, R. S., Thornton, D., Feldman, R., Marques, A. & Murray, D. L. Predicting shifts in parasite distribution with climate change: a multitrophic level approach. Glob. Change Biol. 19, 2645–2654 (2013).
Article  Google Scholar 
Rayfield, B., Moilanen, A. & Fortin, M. J. Incorporating consumer–resource spatial interactions in reserve design. Ecol. Model. 220, 725–733 (2009).
Article  Google Scholar 
Sadykova, D. et al. Ecological costs of climate change on marine predator–prey population distributions by 2050. Ecol. Evol. 10, 1069–1086 (2020).
Article  PubMed  PubMed Central  Google Scholar 
Bonebrake, T. C. et al. Managing consequences of climate‐driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. 93, 284–305 (2018).
Article  PubMed  Google Scholar 
Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: management implications of baleen whale co-occurrence with krill in central California. PLoS ONE 15, e0235603 (2020).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Download references
Environmental Defense Fund, Seattle, WA, USA
Gemma Carroll
Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
Briana Abrahms
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Brisbane, Queensland, Australia
Stephanie Brodie
Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, USA
Megan A. Cimino
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
G.C., B.A., S.B. and M.A.C. conceptualized the paper, reviewed the literature and wrote the paper.
Correspondence to Gemma Carroll.
The authors declare no competing interests.
Nature Ecology & Evolution thanks Albert Phillimore and Joel Durant for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Carroll, G., Abrahms, B., Brodie, S. et al. Spatial match–mismatch between predators and prey under climate change. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02454-0
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-024-02454-0
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement
Nature Ecology & Evolution (Nat Ecol Evol) ISSN 2397-334X (online)
© 2024 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source