The carbon dioxide removal gap – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Climate Change (2024)
Metrics details
Rapid emissions reductions, including reductions in deforestation-based land emissions, are the dominant source of global climate mitigation potential in the coming decades. However, carbon dioxide removal (CDR) will also have an important role to play. Despite this, it remains unclear whether current national proposals for CDR align with temperature targets. Here we show the ‘CDR gap’, that is, CDR efforts proposed by countries fall short of those in integrated assessment model scenarios that limit warming to 1.5 °C. However, the most ambitious proposals for CDR are close to levels in a low-energy demand scenario with the most-limited CDR scaling and aggressive near-term emissions reductions. Further, we observe that many countries propose to expand land-based removals, but none yet commit to substantively scaling novel methods such as bioenergy carbon capture and storage, biochar or direct air carbon capture and storage.
This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
Prices may be subject to local taxes which are calculated during checkout
The data for this Analysis are available via Zenodo at https://doi.org/10.5281/zenodo.10821849 (ref. 69). All raw and processed data are freely accessible, except for complete national-level CDR estimates in 2030 (that is, from the NDCs and other national documents) which will be made available upon reasonable request. Source data are provided with this paper.
The code for this Analysis is available via Zenodo at https://doi.org/10.5281/zenodo.10821849 (ref. 69).
IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
Smith, S. M. et al. The State of Carbon Dioxide Removal 1st edn (The State of Carbon Dioxide Removal, 2023); https://www.stateofcdr.org
Babiker, M. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 12 (Cambridge Univ. Press, 2022).
Tracking Clean Energy Progress (IEA, 2022); https://www.iea.org/topics/tracking-clean-energy-progress
Climate Action Tracker (New Climate Institute and Climate Analytics, 2023); https://climateactiontracker.org/
Boehm, S. et al. State of Climate Action 2022 (WRI, 2022); https://doi.org/10.46830/wrirpt.22.00028
Emissions Gap Report 2022: The Closing Window — Climate Crisis Calls for Rapid Transformation of Societies (UNEP, 2022); https://www.unep.org/emissions-gap-report-2022
den Elzen, M. G. J. et al. Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitig. Adapt. Strateg. Glob. Change 27, 33 (2022).
Article  Google Scholar 
Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).
Article  CAS  Google Scholar 
Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).
Article  CAS  Google Scholar 
Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).
Article  CAS  Google Scholar 
Dooley, K. et al. The Land Gap Report 2022 (Climate Resource, 2022); https://www.landgap.org/
Smith, H. B., Vaughan, N. E. & Forster, J. Long-term national climate strategies bet on forests and soils to reach net-zero. Commun. Earth Environ. 3, 305 (2022).
Article  Google Scholar 
Buck, H. J., Carton, W., Lund, J. F. & Markusson, N. Why residual emissions matter right now. Nat. Clim. Change 13, 351–358 (2023).
Article  Google Scholar 
Lund, J. F., Markusson, N., Carton, W. & Buck, H. J. Net zero and the unexplored politics of residual emissions. Energy Res. Soc. Sci. 98, 103035 (2023).
Article  Google Scholar 
McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond ‘net-zero’: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).
Article  Google Scholar 
Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. 3, 664130 (2021).
Article  Google Scholar 
Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).
Article  Google Scholar 
Powis, C. M., Smith, S. M., Minx, J. C. & Gasser, T. Quantifying global carbon dioxide removal deployment. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/acb450 (2023).
Byers, E. et al. AR6 scenarios database hosted by IIASA. Zenodo https://doi.org/10.5281/zenodo.5886911 (2022).
Gidden, M. J. et al. Aligning climate scenarios to emissions inventories shifts global benchmarks. Nature 624, 102–108 (2023).
Article  CAS  Google Scholar 
Buylova, A., Fridahl, M., Nasiritousi, N. & Reischl, G. Cancel (out) emissions? The envisaged role of carbon dioxide removal technologies in long-term national climate strategies. Front. Clim. 3, 675499 (2021).
Article  Google Scholar 
Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emissions technologies. Nat. Energy 3, 515–527 (2018).
Article  Google Scholar 
Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).
Article  Google Scholar 
Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).
Article  CAS  Google Scholar 
Fyson, C. L. & Jeffery, M. L. Ambiguity in the land use component of mitigation contributions toward the Paris Agreement goals. Earths Future 7, 873–891 (2019).
Article  Google Scholar 
Benveniste, H., Boucher, O., Guivarch, C., Treut, H. L. & Criqui, P. Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions. Environ. Res. Lett. 13, 014022 (2018).
Article  Google Scholar 
Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).
Article  CAS  Google Scholar 
Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change https://doi.org/10.1038/nclimate2392 (2014).
Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).
Article  Google Scholar 
Geden, O. Climate advisers must maintain integrity. Nature 521, 27–28 (2015).
Article  CAS  Google Scholar 
Bergman, A. & Rinberg, A. in CDR Primer (eds. Wilcox, J. et al.) Ch. 1 (Hemlock Printers, 2021).
Carton, W., Hougaard, I., Markusson, N. & Lund, J. F. Is carbon removal delaying emission reductions? WIREs Clim. Change https://doi.org/10.1002/wcc.826 (2023).
Moe, E. & Røttereng, J.-K. S. The post-carbon society: rethinking the international governance of negative emissions. Energy Res. Soc. Sci. 44, 199–208 (2018).
Article  Google Scholar 
Lamb, W. F. et al. Discourses of climate delay. Glob. Sustain. 3, e17 (2020).
Article  Google Scholar 
Painter, J. et al. Climate delay discourses present in global mainstream television coverage of the IPCC’s 2021 report. Commun. Earth Environ. 4, 118 (2023).
Article  Google Scholar 
Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
Article  Google Scholar 
Grassi, G. et al. Carbon fluxes from land 2000–2020: bringing clarity to countries’ reporting. Earth Syst. Sci. Data 14, 4643–4666 (2022).
Article  Google Scholar 
Giebink, C. L. et al. The policy and ecology of forest-based climate mitigation: challenges, needs, and opportunities. Plant Soil 479, 25–52 (2022).
Article  CAS  Google Scholar 
IPCC: Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) (Cambridge University Press, 2019).
Kraxner, F. & Nordström, E.-M. in The Future Use of Nordic Forests (eds Westholm, E. et al.) 63–81 (Springer, 2015).
Hyyrynen, M., Ollikainen, M. & Seppälä, J. European forest sinks and climate targets: past trends, main drivers, and future forecasts. Eur. J. Forest Res. https://doi.org/10.1007/s10342-023-01587-4 (2023).
Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manage. 18, 15 (2023).
Article  Google Scholar 
Nemet, G., Greene, J., Müller-Hansen, F. & Minx, J. C. Dataset on the adoption of historical technologies informs the scale-up of emerging carbon dioxide removal measures. Commun. Earth Environ. 4, 397 (2023).
Article  Google Scholar 
Strefler, J. et al. Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs. Environ. Res. Lett. 13, 044015 (2018).
Article  Google Scholar 
Prütz, R., Strefler, J., Rogelj, J. & Fuss, S. Understanding the carbon dioxide removal range in 1.5 °C compatible and high overshoot pathways. Environ. Res. Commun. 5, 041005 (2023).
Article  Google Scholar 
Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).
Article  CAS  Google Scholar 
Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01604-9 (2023).
Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).
Article  CAS  Google Scholar 
Breyer, C. et al. Proposing a 1.0 °C climate target for a safer future. PLoS Clim. 2, e0000234 (2023).
Article  Google Scholar 
Riahi, K. et al. Cost and attainability of meeting stringent climate targets without overshoot. Nat. Clim. Change 11, 1063–1069 (2021).
Article  Google Scholar 
Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).
Article  CAS  Google Scholar 
van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).
Article  Google Scholar 
Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).
Article  CAS  Google Scholar 
Andreoni, P., Emmerling, J. & Tavoni, M. Inequality repercussions of financing negative emissions. Nat. Clim. Change 14, 48–54 (2024).
Article  Google Scholar 
Fuhrman, J. et al. Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nat. Clim. Change 10, 920–927 (2020).
Article  CAS  Google Scholar 
Crippa, M. et al. CO2 Emissions of All World Countries – 2022 Report (European Commission, 2022); https://edgar.jrc.ec.europa.eu/dataset_ghg70
Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (Cambridge Univ. Press, 2021).
Minx, J. C. et al. Negative emissions—Part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).
Article  Google Scholar 
Gasser, T. & Ciais, P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of ‘emissions from land-use change’. Earth Syst. Dyn. 4, 171–186 (2013).
Article  Google Scholar 
Grassi, G. et al. Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nat. Clim. Change 11, 14 (2021).
Article  Google Scholar 
Grassi, G. et al. Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth Syst. Sci. Data 15, 1093–1114, 2023.
Gütschow, J. & Pflüger, M. The PRIMAP-hist national historical emissions time series (1750–2021) v2.4.2. Zenodo https://doi.org/10.5281/zenodo.7727475 (2023).
Mitigation Paths and Policy Instruments to Reach Brazilian Goals in the Paris Agreement (MCIT, 2017); https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/acordo-de-paris-e-ndc/arquivos/pdf/trajetoriasebookb_final.pdf
Smith, H., Vaughan, N. E. & Forster, J. Navigating Net Zero: Analysing Residual Emissions in Long-Term National Climate Strategies. Preprint at https://doi.org/10.2139/ssrn.4678157 (2024).
In-Depth Analysis in Support on the COM(2018) 773 (European Commission, 2018); https://climate.ec.europa.eu/system/files/2019-08/long-term_analysis_in_depth_analysis_figures_20190722_en.pdf
Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
Article  Google Scholar 
Lamb, W. The carbon dioxide removal gap dataset (version 1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.10821849 (2024).
Download references
This work was supported by the European Union ERC-2020-SyG ‘GENIE’ (951542) grant (W.F.L., J.C.M., G.N., T.G., M.J.G., Y.P., J.S., K.R.); the UK Natural Environment Research Council ‘CO2RE Hub’ (NE/V013106/1) grant (S.M.S.); the European Union Horizon 2020 ‘ESM2025’ (101003536) and ‘RESCUE’ (101056939) grants (T.G.); the German Federal Ministry of Education and Research ‘CDRSynTra’ (01LS2101A) (J.C.M., O.G.) and ‘ASMASYS’ (01LS2101A) grants (O.G.).
Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany
William F. Lamb & Jan C. Minx
Priestley International Centre for Climate, University of Leeds, Leeds, UK
William F. Lamb & Jan C. Minx
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Thomas Gasser, Matthew J. Gidden, Yoga Pratama, Keywan Riahi & Jan Steinhauser
Joint Research Centre, European Commission, Ispra, Italy
Rosa M. Roman-Cuesta & Giacomo Grassi
School of Enterprise and the Environment, University of Oxford, Oxford, UK
Carter M. Powis & Stephen M. Smith
German Institute for International and Security Affairs (SWP), Berlin, Germany
Oliver Geden
University of Wisconsin-Madison, Madison, WI, US
Gregory Nemet
School of Environmental Sciences, University of East Anglia, Norwich, UK
Naomi E. Vaughan & Harry B. Smith
Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK
Naomi E. Vaughan & Harry B. Smith
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
W.F.L., G.N., S.M.S., O.G., K.R. and J.C.M conceived the idea for the paper. W.F.L., T.G., R.M.R.-C., G.G., M.J.G., C.M.P., Y.P., J.S., N.E.V. and H.S. contributed to data gathering and the analysis. W.F.L. wrote the paper. All authors contributed to drafting, reviewing and editing the paper.
Correspondence to William F. Lamb.
The authors declare no competing interests.
Nature Climate Change thanks Andres Clarens, Wim Carton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Discussion, Figs. 1 and 2, and Table 1.
Statistical source data.
Statistical source data.
Statistical source data.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Lamb, W.F., Gasser, T., Roman-Cuesta, R.M. et al. The carbon dioxide removal gap. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01984-6
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41558-024-01984-6
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement
Nature Climate Change (Nat. Clim. Chang.) ISSN 1758-6798 (online) ISSN 1758-678X (print)
© 2024 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source